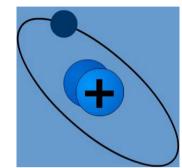

LE PARTICELLE ELEMENTARI

(UN RAPIDO EXCURSUS)

Gianpaolo Bellini Istituto Nazionale di Fisica Nucleare Dipartimento di Fisica dell'Università Milano



Forze elettromagnetiche

CONCETTO DI CAMPO — GRAVITAZIONALE/ E.M.

L'atomo di idrogeno fu studiato per primo:

nucleo + una carica – dell'elettrone in totale neutro πρωτον=**primo**

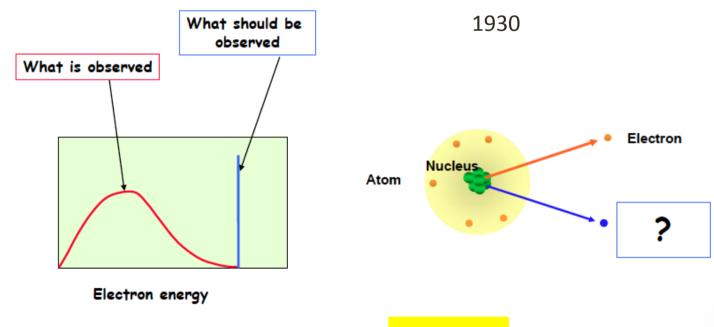
Più semplice ipotesi: gli altri nuclei sono un multiplo del nucleo di idrogeno MA: I chimici trovavano dei multipli frazionari dell'atomo di H

isotopi: uguale Z, ma masse diverse

nel 1930 si trova la soluzione con gli esperimenti di Bothe e Becker (bombardarono nuclei di paraffina con particelle alpha e osservarono l'emissione di particelle che erano capaci di attraversare 200 mm di Pb (dovevano essere neutre)

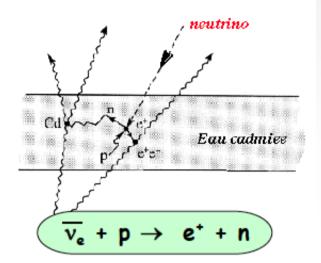
poi Chadvick fece un esperimento più complesso con la paraffina e comprese che si trattava di una particella neutra e pesante

neutrone $m_n=1.003 m_p$

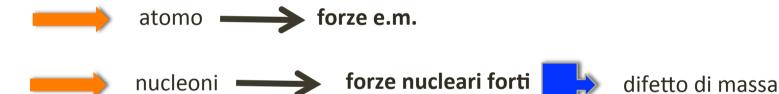


elettroni

vita media del neutrone 886.8± 1.5 sec

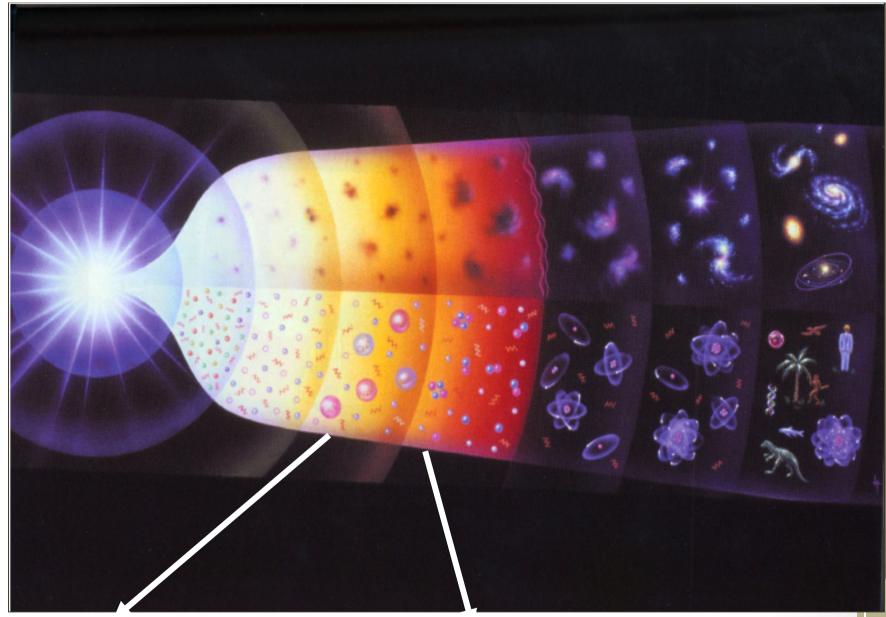


alcuni nuclei non sono stabili, ma decadono N ->p+e-



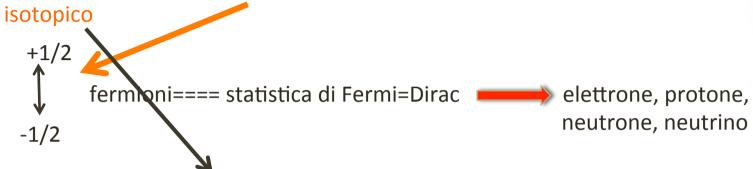
Neutrino

1956: Reines and Cowan observe the first neutrino interactions close to the Savannah River nuclear power plant (in fact it is the electron antineutrino ve)



neutrino: neutro; massa trascurabile;

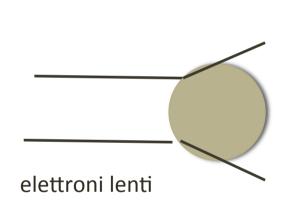
quindi: nella materia stabile si trovano 4 particelle: Neutrone, Protone, Elettrone, neutrino + 4 antiparticelle

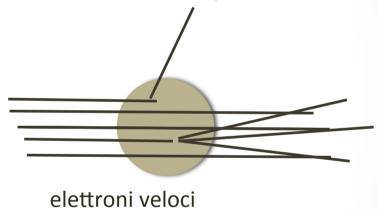

Separazione Radiazione-Particelle (A)

Formazione dei nuclei con particelle stabili- le particelle instabili prodotte nel BB sono decadute (B)

6

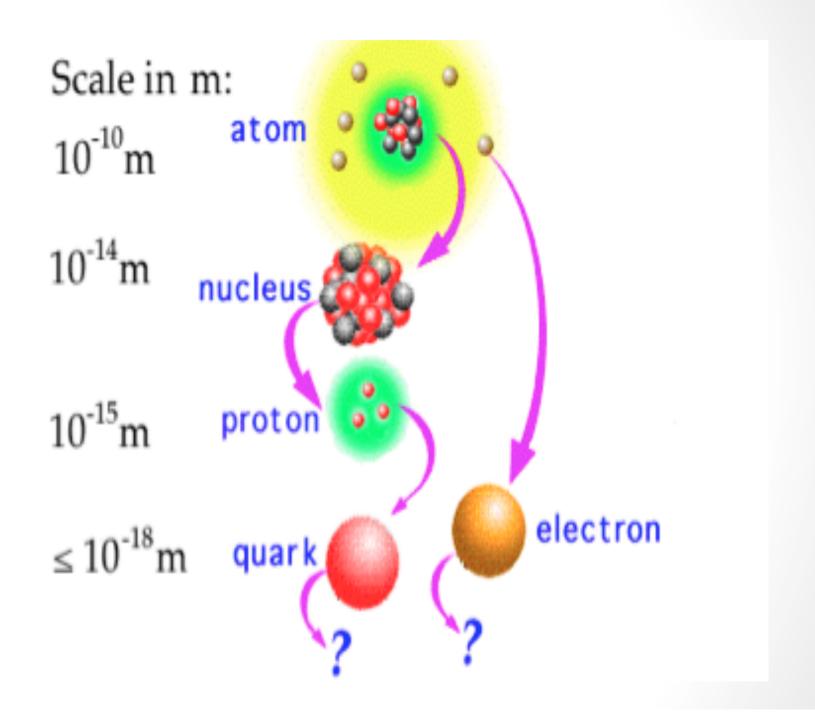
Ma quali sono le caratteristiche di queste particelle?


carica elettrica, massa, spin, momento angolare, momento magnetico, spin isotonico



stabilisce le simmetrie delle particelle

Ipotesi di Feynman e Bjorken- 1969--- partoni


Anni '70 del secolo scorso; a SLAC viene fatto un esperimento sul protone simile a quello di Rutherford sull'atomo- ma usando fasci di elettroni accelerati che avendo un'onda associata molto piccola possono sondare l'interno del protone.

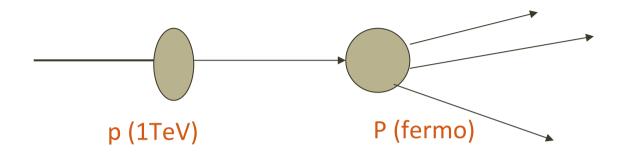
il protone non è elementare- è costituito da componenti praticamente puntiformi- che saranno chiamati QUARKS (da Gellman) quindi la materia è vuota di massa è invece piena di forze

A questo punto lo studio della composizione della materia è completato?

nel 1936, studiando i raggi cosmici - particelle provenienti dallo spazio che urtano contro gli atomi dell'atmosfera terrestre - si osservarono delle nuove particelle che furono chiamate μ o muoni – λ =2. 2 μ sec

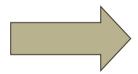
mesone perché la deviazione in campo magnetico la collocava fra il protone e l'elettrone

Isidor Isaac Rabi:" Who ordered it?"

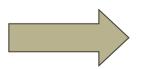

Una saga alla ricerca di particelle instabili; prima con raggi cosmici, poi agli acceleratori di particelle- **Sono tutte instabili**, cioè *decadono* con tempo 10⁻⁸- 10⁻²⁷ s devono essere osservate e studiate in questi brevissimi tempi di vita.

Ma come si producono?

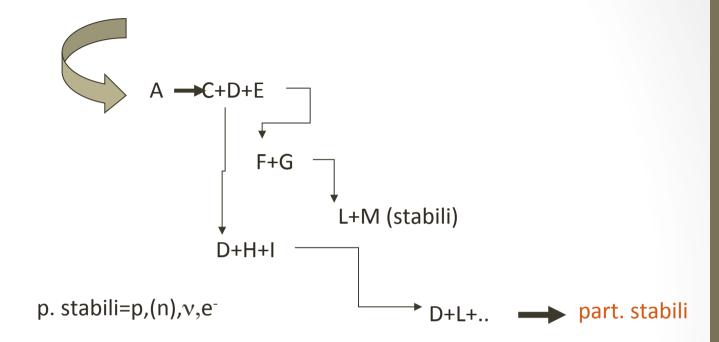
In cosa decadono?


come si studiano? e perché si studiano?

come si producono?


$$t = \frac{10^{-13} cm}{3 \cdot 10^{10} cm/s} \cong 3 \cdot 10^{-24} s$$

$$t = \frac{10^{-13} cm}{3 \cdot 10^{10} cm/s} \cong 3 \cdot 10^{-24} s \qquad P = \frac{10^{12} \cdot 1.6 \cdot 10^{-19} J}{3 \cdot 10^{-24} s} \cong 5 \cdot 10^{16} W \approx 10000 TW$$


Equivale a parecchie migliaia di centrali nucleari

BIG BANG

Come decadono?



in produzione e nel decadimento: si conservano sempre (sistema prima e dopo):

energia, quantità di moto, carica elettrica, momento angolare

come di studiano e si osservano?

Lo studio delle particelle elementari va di pari passo con quello delle forze che agiscono sia nella materia stabile sia nei processi che coinvolgono le particelle

sia le produzioni, sia i decadimenti sono retti da una delle 3 forze fondamentali: e.m., nucleare forte nucleare debole

Quindi si parla di interazioni e di decadimenti e.m., forti. deboli

la probabilità' che avvenga una interazione è propor. alla (costante)²

se la costante forte e' 1, la debole = 1/137 . la debole = 10^{-5}

forze	forte	e.m.	debole
produzione sezione d'urto bar=10 ⁻²⁴ cm ²	mb	μb	nb
decadimento vita media	10 ⁻²⁴ -10 ⁻²⁷ s	10 ⁻¹⁵ s	10 ⁻⁸ -10 ⁻¹⁰ s

$$\mu^- \rightarrow e^- + \nu_\mu + \overline{\nu}_e \qquad \lambda = 2.2 \mu s \qquad M_\mu = 105.7 MeV/c^2$$
 spazio delle fasi
$$n \rightarrow p + e^- + \overline{\nu}_e \qquad \lambda = 886.8 \pm 1.5 \ {\rm sec}$$

14

Due grandi classi: leptoni e adroni

Leptoní

e ⁻ (1/2 MeV/c ²) stabile	μ - (105.7 MeV/c ²) λ =2.2 μ s	τ - (1777 MeV/c ²) λ =2,9 × 10 ⁻¹³ s
ν (e)	ν (μ)	$\nu(au)$

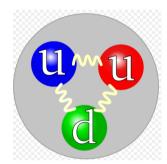
Antileptoni

e+	μ+	τ+
$\overline{v}(e)$	$\overline{v}(\mu)$	$\overline{v}(au)$

obbediscono alle forze deboli e e.m.--- produzioni e decadimenti sono deboli- la produzione di coppie e l'annichilazione sono inter. e.m.

$$\gamma \rightarrow e^+ + e^- nel \ campo \ nucleare \qquad e^+ + e^- \rightarrow 2\gamma$$

Sapore leptonico: si conserva sempre


$$\mu^- + p \rightarrow n + e^+ + \nu(\mu) + \nu(e)$$
 $\mu^+ + p \rightarrow p + \overline{\nu}(\mu)$

Adroní (non sono elementari, ma costituiti da quarks) mesoní baríoní

Un passo indietro: qualcosa sul modello a quarks

spin ½ carica frazionaria: - 1/3 (d) o 2/3 (u)

protone: spin ½ carica 1 neutrone: udd spin -1/2 carica 0

altri 4: sapore (e quindi anche numero) dei quarks
conservato nelle interazioni forti
violato nelle interazioni deboli

Ma: i mesoni sono formati da quark+antiquark

es. il mesone
$$\pi$$
 $\begin{bmatrix} \frac{\mathsf{u}}{\mathsf{d}} & \pi^+ \\ \frac{\mathsf{d}}{\mathsf{u}} & \pi^- \end{bmatrix}$ $\pi^0 \ \frac{u}{\overline{u}}$ $K^- \ \frac{s}{\overline{u}}$ $K^+ \ \frac{u}{\overline{s}}$

poiche' sono quark-antiquark possono essere prodotti in numero qualsivoglia, basta che sia conservato il sapore

$$\pi^{-}(d,\overline{u}) + p(u,u,d) \rightarrow n(u,d,d) + \pi^{-}(d,\overline{u}) + \pi^{+}(u,\overline{d}) + \pi^{0}(u,\overline{u})$$

$$\rightarrow K^{-}(s,\overline{u}) + K^{+}(u,\overline{s}) + n(u,d,d)$$

$$K^{-}(s,\overline{u}) + \pi^{+}(u,\overline{d}) \quad IMPOSSIBILE$$

DECADIMENTI
$$\pi^-(d,\overline{u}) \to \mu^- + \nu_\mu \qquad \lambda = 2.6002 x 10^{-8} s$$
 lungo
$$K^+ \frac{u}{\overline{s}} \qquad \frac{u}{\overline{d}} \pi^+ \qquad \lambda = 5.116 x 10^{-8} s$$
 corto
$$K^-(s,\overline{u}) \to \pi^-(d,\overline{u}) + \pi^0(u,\overline{u}) \qquad \lambda = 8.953 x 10^{-11} s$$

Mesoni

BARIONI produzione: interazione forte

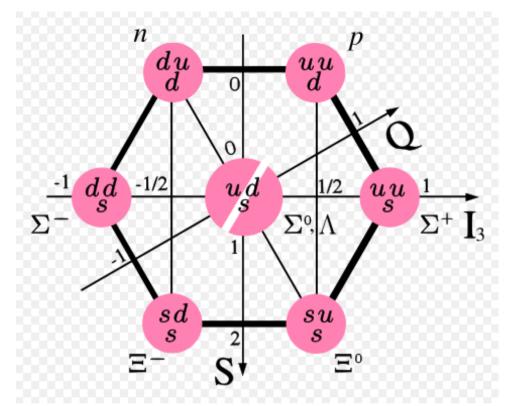
decadimento: interazione debole

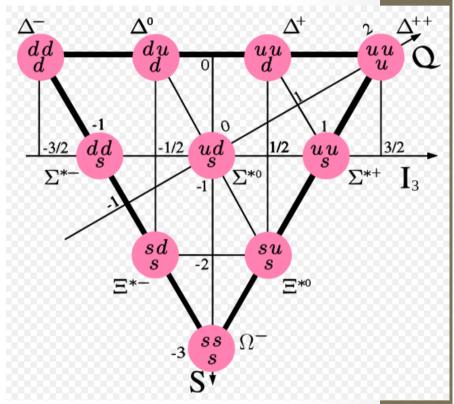
interazione forte

anche e.m.

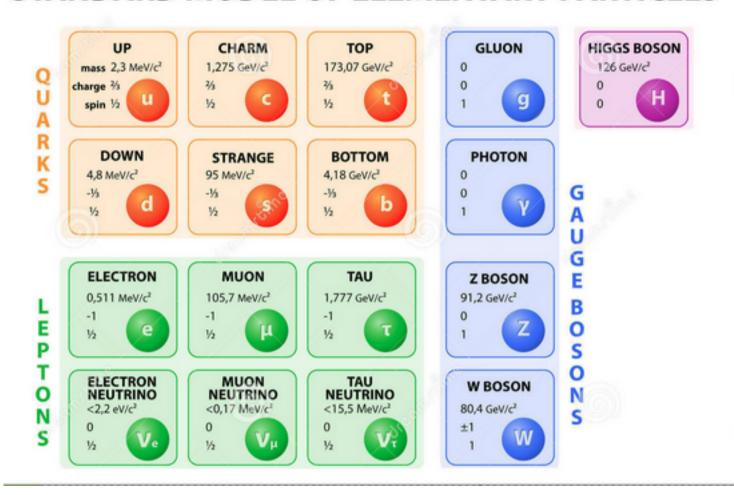
esiste il **numero barionico**, cioe' il numero di barioni in una interazione deve rimanrere invariato- naturalmente questo e' legato al numero di quarks

Piu' di 80- qualche esempio sono fermioni con spin : ½ o 3/2

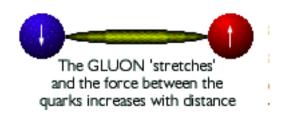

18


$$\begin{array}{lll} \mathbf{p (uud) \ n(udd) \ spin \frac{1}{2}} & \longrightarrow & p \ (uud) + \pi^{-}(d,\overline{u}) & 2.6 \times 10^{-10} \mathrm{s} \\ & \Sigma^{+}(uu\overline{s}) \ / \ \Sigma^{-}(\mathrm{dds}) \ (\mathrm{spin \frac{1}{2}}) & \longrightarrow & p \ (\mathrm{uud}) + \pi^{0}(u,\overline{u}) \ / \ n(\mathrm{udd}) + \pi^{-}(d,\overline{u}) & 0.01 \times 10^{-10} \\ & \Sigma^{0} \ (\mathrm{uds}) & \longrightarrow & \Lambda^{0} \ (\mathrm{uds}) + \gamma & 7.4 \times 10^{-20} \ \mathrm{s} \\ & \Delta^{+}(\mathrm{uud}) \ / \Delta^{0}(\mathrm{udd}) \ / \Delta^{-}(\mathrm{ddd}) \ (\mathrm{spin 3/2}) & \Delta^{+}(\mathrm{uud}) & \longrightarrow & p \ (\mathrm{uud}) + \pi^{0}(u,\overline{u}) & 5.6 \times 10^{-24} \ \mathrm{s} \\ & p \ (uud) + p \ (uud) & \longrightarrow & \Lambda^{0} \ (uds) + \Sigma^{+}(uu\overline{s}) + \pi^{+}(u,\overline{d}) & impossibile \\ & p \ (uud) + p \ (uud) & \longrightarrow & \Lambda^{0} \ (uds) + \Sigma^{+}(uu\overline{s}) + \pi^{0}(u,\overline{u}) & impossibile \\ & p \ (uud) + n \ (udd) & \longrightarrow & \Lambda^{0} \ (uds) + \Sigma^{+}(uu\overline{s}) + \pi^{0}(u,\overline{u}) & impossibile \\ & \pi^{0} \ (u\overline{u}) + p \ (uud) & \longrightarrow & \Lambda^{0} \ (uds) + K^{+}(u\overline{s}) \end{array}$$

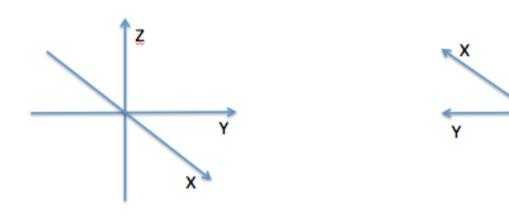
Le regole di conservazione¶


Grandezza conservata¤	Sempre¤	Interazio ne forte¤	Interazio ne debole¤	Interazione elettromagneti ca¤	П
Energia¤	Xμ	п	п	п	Ħ
Carica elettrica¤	Χ¤	п	п	п	п
Quantità di moto¤	Χ¤	п	п	п	Ħ
Momento- angolare [™]	Χ¤	п	п	п	П
Sapore leptonico¤	X¶ (con l'eccezione dell'oscillazi one del neutrino)¤		п	п	H
Sapore dei quark¤	п	Χ¤	п	Χ¤	п

Forze che	nucleari	nucleari	elettrom
reggono il processo	forti	deboli	agnetiche
Produzione		X	
dei leptoni			
Produzione	X		
degli <mark>adroni</mark>			
Decadimento		X	
dei leptoni			
Decadimento	X	X	
degli <mark>adroni</mark>			
Produzione e			X
decadimenti che			
coinvolgono fotoni e			
in certi casi anche			
elettroni			



STANDARD MODEL OF ELEMENTARY PARTICLES


confinamento dei quarks

Simmetrie

La **coniugazione di carica** (simbolo C) è l'operazione che cambia una particella nella sua antiparticella : ad esempio se applico tale operazione ad un elettrone, questa lo trasforma in un elettrone positivo, cioè un positrone.

L'operazione di **parità** (simbolo **P**) consiste nell'inversione delle coordinate spaziali. E quindi capovolge l'immagine di un corpo e ne scambia il lato destro con il lato sinistro

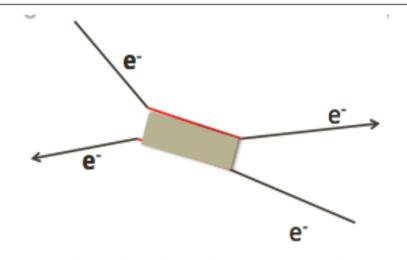
Prima della operazione di Parità

Dopo l'applicazione dell'operazione Parità

Infine *l'inversione temporale* (simbolo **T**) fa andare in senso inverso lo sviluppo temporale di un'interazione – esempio urto elastico (2 palle di biliardo)

Il mondo subnucleare rimane invariato rispetto a queste tre operazioni di simmetria? Considerando queste operazioni singolarmente, la risposta è no

Le operazioni di *Coniugazione di carica* e di *Parità* vengono violate in tutti i fenomeni fisici connessi con l'interazione debole. Però se le due operazioni vengono eseguite insieme la simmetria viene rispettata (**simmetria CP**). es. neutrino e spin sinistrorso


La *simmetria CP* è una simmetria quasi esatta delle leggi della materia nel senso che le sue violazioni sono molto rare. Le *violazioni di CP* sono state riscontrate in processi deboli, mentre non sono presenti nelle interazioni forti.

Problema asimmetria materia-antimateria

Simmetria CPT- se noi consideriamo l'immagine speculare più rotazione di mezzo angolo giro di tutti gli oggetti presenti nell'Universo, sostituiamo tutta la materia con antimateria e facciamo tornare indietro nel tempo l'evoluzione dell'Universo, otteniamo **un Universo che si comporta esattamente** come quello che conosciamo.

Ma qual'è il meccanismo che realmente crea l'interazione e ad esempio trasforma una particella in altre particelle? L'azione si esplica attraverso delle particelle che chiameremo *particelle-forza* per distinguerle dalle *particelle-materia*. Queste particelle-forza sono caratteristiche dei tre campi di forza agenti nella struttura elementare della materia.

campo — quanto del campo

asimmetria fra le tre interazioni fondamentali

teoria di Higgs- campo scalare- influenza solo sulle interazioni deboli. Sarebbe responsabile dell massa grande dei bosoni